Deleting key autophagy elongation proteins induces acquirement of tumor-associated phenotypes via ISG15

删除关键的自噬延伸蛋白可通过ISG15诱导肿瘤相关表型的获得

阅读:1
作者:EunBin Kong ,Hag Dong Kim ,Joon Kim

Abstract

Autophagy is a cellular catabolic process that maintains intracellular homeostasis using lysosomal degradation systems. We demonstrate that inhibiting autophagy by depleting essential autophagy elongation proteins, Atg5 or Atg7, induces ISG15 expression through STING-mediated cytosolic dsDNA response. Genome stability is impaired in ATG5- or ATG7-depleted cells, and thus, double-strand breakages of DNA increase and cytosolic dsDNA accumulates. Accumulated cytosolic dsDNA induces the STING pathway to activate type I IFN signals which induce STAT1 activity and downregulate ATF3. When depletion of ATG5 or ATG7 inhibits autophagy, ATF3 is downregulated and STAT1 is upregulated. Furthermore, inhibiting autophagy induces ISG15 expression through STAT1 activation, which promotes acquisition of tumor-associated phenotypes such as migration, invasion, and proliferation. In conclusion, it appears that via the STING-mediated cytosolic dsDNA response, the STAT1-ISG15 axis mediates the relationship between autophagy and the immune system in relation to tumor progression. Moreover, combined with autophagy control, regulating ISG15 expression could be a novel strategy for cancer immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。