CAST/ELKS Proteins Control Voltage-Gated Ca2+ Channel Density and Synaptic Release Probability at a Mammalian Central Synapse

CAST/ELKS 蛋白控制哺乳动物中央突触处的电压门控 Ca2+ 通道密度和突触释放概率

阅读:5
作者:Wei Dong, Tamara Radulovic, R Oliver Goral, Connon Thomas, Monica Suarez Montesinos, Debbie Guerrero-Given, Akari Hagiwara, Travis Putzke, Yamato Hida, Manabu Abe, Kenji Sakimura, Naomi Kamasawa, Toshihisa Ohtsuka, Samuel M Young Jr

Abstract

In the presynaptic terminal, the magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (VGCCs) regulate the efficacy of neurotransmitter release. However, how presynaptic active zone proteins control mammalian VGCC levels and organization is unclear. To address this, we deleted the CAST/ELKS protein family at the calyx of Held, a CaV2.1 channel-exclusive presynaptic terminal. We found that loss of CAST/ELKS reduces the CaV2.1 current density with concomitant reductions in CaV2.1 channel numbers and clusters. Surprisingly, deletion of CAST/ELKS increases release probability while decreasing the readily releasable pool, with no change in active zone ultrastructure. In addition, Ca2+ channel coupling is unchanged, but spontaneous release rates are elevated. Thus, our data identify distinct roles for CAST/ELKS as positive regulators of CaV2.1 channel density and suggest that they regulate release probability through a post-priming step that controls synaptic vesicle fusogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。