Immune checkpoint gene signature assesses immune infiltration profiles in bladder cancer and identifies KRT23 as an immunotherapeutic target

免疫检查点基因特征评估膀胱癌的免疫浸润特征并确定 KRT23 为免疫治疗靶点

阅读:7
作者:Dongshan Chen #, Haoyuan Cao #, Xiang Zheng #, Haojun Wang, Zengchi Han, Wei Wang

Background

In the past few decades, researchers have made promising progress, including the development of immune checkpoint inhibitors (ICIs) in the therapy of bladder cancer (BLCA). Existing studies mainly focus on single immune checkpoint inhibitors but lack relevant studies on the gene expression profiles of multiple immune checkpoints.

Conclusions

This study systematically and comprehensively analyzed the expression profile of immune checkpoint genes, and established the ICG signature to investigate the differences in ICGs expression and tumor immune microenvironment, which will help risk stratification and accelerate precision medicine. Finally, we identified KRT23 as the most critical model gene, and highlighted KRT23 as a potential target to enhance immunotherapy against BLCA.

Methods

RNA-sequencing profiling data and clinical information of BLCA patients and normal human bladder samples were acquired from the Cancer Genome Atlas and Gene Expression Omnibus databases and analyzed to identify different expression profiles of immune checkpoint genes (ICGs) after consensus clustering analysis. Based on the 526 intersecting differentially expressed genes, the LASSO Cox regression analysis was utilized to construct the ICG signature.

Results

According to the expression of ICGs, BLCA patients were divided into three subtypes with different phenotypic and mechanistic characteristics. Furthermore, the developed ICG signature were independent predictors of outcome in BLCA patients, and was correlated with the immune infiltration, the expression of ICGs and chemotherapeutic effect. Conclusions: This study systematically and comprehensively analyzed the expression profile of immune checkpoint genes, and established the ICG signature to investigate the differences in ICGs expression and tumor immune microenvironment, which will help risk stratification and accelerate precision medicine. Finally, we identified KRT23 as the most critical model gene, and highlighted KRT23 as a potential target to enhance immunotherapy against BLCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。