Effects of ghrelin receptor activation on forebrain dopamine release, conditioned fear and fear extinction in C57BL/6J mice

生长素释放肽受体激活对 C57BL/6J 小鼠前脑多巴胺释放、条件性恐惧和恐惧消退的影响

阅读:5
作者:Anouk Pierre, Andries Van Schuerbeek, Wissal Allaoui, Sven Van Laere, Nicolas Singewald, Ann Van Eeckhaut, Ilse Smolders, Dimitri De Bundel

Abstract

The ghrelin system was previously proposed to mediate an independent branch of the stress response that curbs fear processing. Interestingly, the ghrelin system was also shown to control the activity of midbrain dopamine neurons. Given that dopamine neurons of the ventral tegmental area appear to have a critical role in fear processing, we aimed to investigate their contribution to the effects of ghrelin on fear processing. Our data show that systemic administration of the ghrelin receptor agonist MK0677, in a dose that induces food intake, has no significant effect on auditory fear processing and does not significantly affect dopamine release in the nucleus accumbens of male C57BL/6J mice. Local administration of the ghrelin receptor agonist MK0677 into the ventral tegmental area significantly increases food intake and it also significantly increased dopamine release in the nucleus accumbens, the medial prefrontal cortex and the amygdala. Nevertheless, it did not significantly affect auditory fear extinction. Our data indicate that pharmacological activation of midbrain dopamine neurons using a ghrelin receptor agonist does not affect auditory fear extinction. We also investigated the effect of non-pharmacological manipulation of the ghrelin system on auditory fear processing. However, we found that neither overnight food deprivation nor genetic ablation of the ghrelin receptor had a significant effect on auditory fear extinction. We conclude that the effects of manipulation of the ghrelin system on fear processing are subject to boundary conditions that remain poorly understood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。