Cytokinin-induced protein synthesis suppresses growth and osmotic stress tolerance

细胞分裂素诱导的蛋白质合成抑制生长和渗透胁迫耐受性

阅读:6
作者:Sumudu S Karunadasa, Jasmina Kurepa, Timothy E Shull, Jan A Smalle

Abstract

Cytokinins control critical aspects of plant development and environmental responses. Perception of cytokinin ultimately leads to the activation of proteins belonging to the type-B Response Regulator family of cytokinin response activators. In Arabidopsis thaliana, ARR1 is one of the most abundantly expressed type-B Response Regulators. We investigated the link between cytokinin signaling, protein synthesis, plant growth and osmotic stress tolerance. We show that the increased cytokinin signaling in ARR1 gain-of-function transgenic lines is associated with increased rates of protein synthesis, which lead to growth inhibition and hypersensitivity to osmotic stress. Cytokinin-induced growth inhibition and osmotic stress hypersensitivity were rescued by treatments with ABA, a hormone known to inhibit protein synthesis. We also demonstrate that cytokinin-induced protein synthesis requires isoforms of the ribosomal protein L4 encoded by the cytokinin-inducible genes RPL4A and RPL4D, and that RPL4 loss-of-function increases osmotic stress tolerance and decreases sensitivity to cytokinin-induced growth inhibition. These findings reveal that an increase in protein synthesis negatively impacts growth and osmotic stress tolerance and explain some of the adverse effects of elevated cytokinin action on plant development and stress physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。