Aberrant signalling by protein kinase CK2 in imatinib-resistant chronic myeloid leukaemia cells: biochemical evidence and therapeutic perspectives

伊马替尼耐药慢性粒细胞白血病细胞中蛋白激酶 CK2 的异常信号传导:生化证据和治疗前景

阅读:6
作者:Christian Borgo, Luca Cesaro, Valentina Salizzato, Maria Ruzzene, Maria Lina Massimino, Lorenzo A Pinna, Arianna Donella-Deana

Abstract

Chronic myeloid leukaemia (CML) is driven by the fusion protein Bcr-Abl, a constitutively active tyrosine kinase playing a crucial role in initiation and maintenance of CML phenotype. Despite the great efficacy of the Bcr-Abl-specific inhibitor imatinib, resistance to this drug is recognized as a major problem in CML treatment. We found that in LAMA84 cells, characterized by imatinib-resistance caused by BCR-ABL1 gene amplification, the pro-survival protein kinase CK2 is up-regulated as compared to the sensitive cells. CK2 exhibits a higher protein-level and a parallel enhancement of catalytic activity. Consistently, CK2-catalysed phosphorylation of Akt-Ser129 is increased. CK2 co-localizes with Bcr-Abl in the cytoplasmic fraction as judged by subcellular fractionation and fluorescence immunolocalization. CK2 and Bcr-Abl are members of the same multi-protein complex(es) in imatinib-resistant cells as demonstrated by co-immunoprecipitation and co-sedimentation in glycerol gradients. Cell treatment with CX-4945, a CK2 inhibitor currently in clinical trials, counteracts CK2/Bcr-Abl interaction and causes cell death by apoptosis. Interestingly, combination of CX-4945 with imatinib displays a synergistic effect in reducing cell viability. Consistently, knockdown of CK2α expression by siRNA restores the sensitivity of resistant LAMA84 cells to low imatinib concentrations. Remarkably, the CK2/Bcr-Abl interaction and the sensitization towards imatinib obtained by CK2-inhibition in LAMA84 is observable also in other imatinib-resistant CML cell lines. These results demonstrate that CK2 contributes to strengthen the imatinib-resistance phenotype of CML cells conferring survival advantage against imatinib. We suggest that CK2 inhibition might be a promising tool for combined strategies in CML therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。