Structure-activity relationships of 44 halogenated compounds for iodotyrosine deiodinase-inhibitory activity

44 种卤代化合物对碘酪氨酸脱碘酶抑制活性的构效关系

阅读:9
作者:Ryo Shimizu, Masafumi Yamaguchi, Naoto Uramaru, Hiroaki Kuroki, Shigeru Ohta, Shigeyuki Kitamura, Kazumi Sugihara

Abstract

The aim of this study was to investigate the possible influence of halogenated compounds on thyroid hormone metabolism via inhibition of iodotyrosine deiodinase (IYD) activity. The structure-activity relationships of 44 halogenated compounds for IYD-inhibitory activity were examined in vitro using microsomes of HEK-293 T cells expressing recombinant human IYD. The compounds examined were 17 polychlorinated biphenyls (PCBs), 15 polybrominated diphenyl ethers (PBDEs), two agrichemicals, five antiparasitics, two pharmaceuticals and three food colorants. Among them, 25 halogenated phenolic compounds inhibited IYD activity at the concentration of 1×10(-4)M or 6×10(-4)M. Rose bengal was the most potent inhibitor, followed by erythrosine B, phloxine B, benzbromarone, 4'-hydroxy-2,2',4-tribromodiphenyl ether, 4-hydroxy-2,3',3,4'-tetrabromodiphenyl ether, 4-hydroxy-2',3,4',5,6'-pentachlorobiphenyl, 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether, triclosan, and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. However, among PCBs and PBDEs without a hydroxyl group, including their methoxylated metabolites, none inhibited IYD activity. These results suggest that halogenated compounds may disturb thyroid hormone homeostasis via inhibition of IYD, and that the structural requirements for IYD-inhibitory activity include halogen atom and hydroxyl group substitution on a phenyl ring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。