Conclusion
According to in vivo studies, Gem-HCl microsphere-loaded poloxamer gel was found to be an effective and promising alternative for current intravesical delivery-system therapies.
Methods
For this purpose, bioadhesive microspheres were successfully prepared with average particle size, encapsulation efficiency, and loading capacity of 98.4 µm, 82.657%±5.817%, and 12.501±0.881 mg, respectively. For intravesical administration, bioadhesive microspheres were dispersed in mucoadhesive chitosan or in situ poloxamer gels and characterized in terms of gelation temperature, viscosity, mechanical, syringeability, and bioadhesive and rheological properties. The cytotoxic effects of Gem-HCl solution, Gem-HCl microspheres, and Gem-HCl microsphere-loaded gel formulations were evaluated in two different bladder cancer cell lines: T24 (ATCC HTB4TM) and RT4 (ATCC HTB2TM).
Results
According to cell-culture studies, Gem-HCl microsphere-loaded poloxamer gel was more cytotoxic than Gem-HCl microsphere-loaded chitosan gel. Antitumor efficacy of newly developed formulations were investigated by in vivo studies using bladder-tumor-induced rats.
