ERK and RSK regulate distinct steps of a cellular program that induces transition from multicellular epithelium to single cell phenotype

ERK 和 RSK 调节细胞程序的不同步骤,诱导从多细胞上皮细胞向单细胞表型的转变

阅读:6
作者:Josef Čáslavský, Zuzana Klímová, Tomáš Vomastek

Abstract

The ERK (extracellular signal-regulated kinases) cascade has an evolutionarily conserved three tier architecture consisting of protein kinases Raf, MEK (MAPK/ERK kinase) and ERK. Following activation, ERK phosphorylates various cellular elements leading to diverse cellular responses. Downstream of ERK the family of p90 ribosomal S6 kinases (RSKs) has been proven to be an important conveyor of ERK signaling, however, little is known if ERK and RSK coordinate their functions to generate a specific biological response. Here we show that in epithelial cells conditional activation of the ERK pathway causes phenotypic conversion of epithelial cells to autonomously migrating cells. This process involves two sequential steps characterized by loss of apical-basal polarity followed by cell scattering. The activation of ERK, but not RSK, is sufficient for the execution of the first step and it requires calpain mediated remodeling of actin cytoskeleton. Conversely, RSK regulates the successive stage characterized by cell-cell contact weakening and increased cellular migration. Thus, ERK and RSK regulate different cellular subprograms and coordinated execution of these subprograms in time generates a relevant biological response. Our data also suggest that the mechanism by which the ERK pathway controls a cellular response may be distributed between ERK and RSK, rather than being elicited by a single effector kinase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。