The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation

NAD 依赖性脱乙酰酶 sirtuin 2 是小胶质细胞活化和脑炎症的抑制剂

阅读:7
作者:Teresa Faria Pais, Éva M Szegő, Oldriska Marques, Leonor Miller-Fleming, Pedro Antas, Patrícia Guerreiro, Rita Machado de Oliveira, Burcu Kasapoglu, Tiago Fleming Outeiro

Abstract

Deleterious sustained inflammation mediated by activated microglia is common to most of neurologic disorders. Here, we identified sirtuin 2 (SIRT2), an abundant deacetylase in the brain, as a major inhibitor of microglia-mediated inflammation and neurotoxicity. SIRT2-deficient mice (SIRT2(-/-)) showed morphological changes in microglia and an increase in pro-inflammatory cytokines upon intracortical injection of lipopolysaccharide (LPS). This response was associated with increased nitrotyrosination and neuronal cell death. Interestingly, manipulation of SIRT2 levels in microglia determined the response to Toll-like receptor (TLR) activation. SIRT2 overexpression inhibited microglia activation in a process dependent on serine 331 (S331) phosphorylation. Conversely, reduction of SIRT2 in microglia dramatically increased the expression of inflammatory markers, the production of free radicals, and neurotoxicity. Consistent with increased NF-κB-dependent transcription of inflammatory genes, NF-κB was found hyperacetylated in the absence of SIRT2, and became hypoacetylated in the presence of S331A mutant SIRT2. This finding indicates that SIRT2 functions as a 'gatekeeper', preventing excessive microglial activation through NF-κB deacetylation. Our data uncover a novel role for SIRT2 opening new perspectives for therapeutic intervention in neuroinflammatory disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。