The vasopressin type 2 receptor and prostaglandin receptors EP2 and EP4 can increase aquaporin-2 plasma membrane targeting through a cAMP-independent pathway

加压素 2 型受体和前列腺素受体 EP2 和 EP4 可通过 cAMP 非依赖性途径增加水通道蛋白-2 质膜靶向性

阅读:9
作者:Emma T B Olesen, Hanne B Moeller, Mette Assentoft, Nanna MacAulay, Robert A Fenton

Abstract

Apical membrane targeting of the collecting duct water channel aquaporin-2 (AQP2) is essential for body water balance. As this event is regulated by Gs coupled 7-transmembrane receptors such as the vasopressin type 2 receptor (V2R) and the prostanoid receptors EP2 and EP4, it is believed to be cAMP dependent. However, on the basis of recent reports, it was hypothesized in the current study that increased cAMP levels are not necessary for AQP2 membrane targeting. The role and dynamics of cAMP signaling in AQP2 membrane targeting in Madin-Darby canine kidney and mouse cortical collecting duct (mpkCCD14) cells was examined using selective agonists against the V2R (dDAVP), EP2 (butaprost), and EP4 (CAY10580). During EP2 stimulation, AQP2 membrane targeting continually increased during 80 min of stimulation; whereas cAMP levels reached a plateau after 10 min. EP4 stimulation caused a rapid and transient increase in AQP2 membrane targeting, but did not significantly increase cAMP levels. After washout of the EP2 agonist or dDAVP, AQP2 membrane abundance remained elevated for at least 80 min, whereas cAMP levels rapidly decreased. Similar effects of the EP2 agonist were also observed for AQP2 constitutively nonphosphorylated at ser-269. The adenylyl cyclase inhibitor SQ22536 did not prevent AQP2 targeting during stimulation of each receptor, nor after dDAVP washout. In conclusion, this study demonstrates that although direct stimulation with cAMP causes AQP2 membrane targeting, cAMP is not necessary for receptor-mediated AQP2 membrane targeting and Gs-coupled receptors can also signal through an alternative pathway that increases AQP2 membrane targeting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。