11% Organic Photovoltaic Devices Based on PTB7-Th: PC71BM Photoactive Layers and Irradiation-Assisted ZnO Electron Transport Layers

11% 基于 PTB7-Th 的有机光伏器件:PC71BM 光活性层和辐照辅助 ZnO 电子传输层

阅读:5
作者:Havid Aqoma, Sujung Park, Hye-Yun Park, Wisnu Tantyo Hadmojo, Seung-Hwan Oh, Sungho Nho, Do Hui Kim, Jeonghoon Seo, Sungmin Park, Du Yeol Ryu, Shinuk Cho, Sung-Yeon Jang

Abstract

The enhancement of interfacial charge collection efficiency using buffer layers is a cost-effective way to improve the performance of organic photovoltaic devices (OPVs) because they are often universally applicable regardless of the active materials. However, the availability of high-performance buffer materials, which are solution-processable at low temperature, are limited and they often require burdensome additional surface modifications. Herein, high-performance ZnO based electron transporting layers (ETLs) for OPVs are developed with a novel g-ray-assisted solution process. Through careful formulation of the ZnO precursor and g-ray irradiation, the pre-formation of ZnO nanoparticles occurs in the precursor solutions, which enables the preparation of high quality ZnO films. The g-ray assisted ZnO (ZnO-G) films possess a remarkably low defect density compared to the conventionally prepared ZnO films. The low-defect ZnO-G films can improve charge extraction efficiency of ETL without any additional treatment. The power conversion efficiency (PCE) of the device using the ZnO-G ETLs is 11.09% with an open-circuit voltage (VOC), short-circuit current density ( JSC), and fill factor (FF) of 0.80 V, 19.54 mA cm-2, and 0.71, respectively, which is one of the best values among widely studied poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: [6,6]-phenyl-C71-butyric acid methyl ester (PTB7-Th:PC71BM)-based devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。