In Vitro Evaluation of Cellular Interactions with Nanostructured Spheres of Alginate and Zinc-Substituted Carbonated Hydroxyapatite

体外评估细胞与海藻酸盐和锌取代碳酸羟基磷灰石纳米结构球的相互作用

阅读:4
作者:Jessica Dornelas, Gisele Dornelas, Elena Mavropoulos Oliveira Tude, Carlos Fernando Mourão, Alexandre da Malta Rossi, Gutemberg Gomes Alves

Abstract

The increasing demand for effective bone regeneration materials drives the exploration of biomaterials with enhanced bioactivity and biocompatibility, such as zinc-substituted compounds. This study investigates the in vitro cellular interactions with nanostructured spheres composed of alginate/carbonated hydroxyapatite (CHA), compared to zinc-substituted CHA (ZnCHA). This work aimed to compare the physicochemical properties and biological effects of ZnCHA and CHA on osteoblasts. ZnCHA was synthesized using a wet chemical method, followed by characterization through X-ray diffraction, Fourier transform infrared spectroscopy, total organic carbon analysis, Wavelength-dispersive X-ray spectroscopy, and BET surface area analysis to assess ion release and structural changes. Biological evaluation was conducted using cell viability, proliferation, and biomineralization assays on osteoblasts. Results showed successful incorporation of zinc and carbonate, leading to reduced crystallinity and increased surface area. Cell viability and proliferation assays indicated ZnCHA's cytocompatibility and enhanced osteoblastic activity, with increased mineralization nodules compared to CHA samples. The study concludes that ZnCHA composites are promising candidates for bone tissue engineering, demonstrating improved cytocompatibility and potential for further preclinical evaluations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。