Rab3A/Rab27A System Silencing Ameliorates High Glucose-Induced Injury in Podocytes

Rab3A/Rab27A 系统沉默可改善高糖诱导的足细胞损伤

阅读:6
作者:Olga Martinez-Arroyo, Ana Flores-Chova, Belen Sanchez-Garcia, Josep Redon, Raquel Cortes, Ana Ortega

Abstract

Diabetic nephropathy is a major complication in diabetic patients. Podocytes undergo loss and detachment from the basal membrane. Intra- and intercellular communication through exosomes are key processes for maintaining function, and the Rab3A/Rab27A system is an important counterpart. Previously, we observed significant changes in the Rab3A/Rab27A system in podocytes under glucose overload, demonstrating its important role in podocyte injury. We investigated the implication of silencing the Rab3A/Rab27A system in high glucose-treated podocytes and analysed the effect on differentiation, apoptosis, cytoskeletal organisation, vesicle distribution, and microRNA expression in cells and exosomes. For this, we subjected podocytes to high glucose and transfection through siRNAs, and we isolated extracellular vesicles and performed western blotting, transmission electron microscopy, RT-qPCR, immunofluorescence and flow cytometry assays. We found that silencing RAB3A and RAB27A generally leads to a decrease in podocyte differentiation and cytoskeleton organization and an increase in apoptosis. Moreover, CD63-positive vesicles experienced a pattern distribution change. Under high glucose, Rab3A/Rab27A silencing ameliorates some of these detrimental processes, suggesting a differential influence depending on the presence or absence of cellular stress. We also observed substantial expression changes in miRNAs that were relevant in diabetic nephropathy upon silencing and glucose treatment. Our findings highlight the Rab3A/Rab27A system as a key participant in podocyte injury and vesicular traffic regulation in diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。