Synaptic AP2 CCV life cycle regulation by the Eps15, ITSN1, Sgip1/AP2, synaptojanin1 interactome

突触 AP2 CCV 生命周期由 Eps15、ITSN1、Sgip1/AP2、synaptojanin1 相互作用组调控

阅读:6
作者:R Mishra, G F Sengül, E Candiello, P Schu

Abstract

The AP1/σ1B knockout causes impaired synaptic vesicle recycling and enhanced protein sorting into endosomes, leading to severe intellectual disability. These disturbances in synaptic protein sorting induce as a secondary phenotype the upregulation of AP2 CCV mediated endocytosis. Synapses contain canonical AP2 CCV and AP2 CCV with a more stable coat and thus extended life time. In AP1/σ1B knockout synapses, pool sizes of both CCV classes are doubled. Additionally, stable CCV of the knockout are more stabilised than stable wt CCV. One mechanism responsible for enhanced CCV stabilisation is the reduction of synaptojanin1 CCV levels, the PI-4,5-P2 phosphatase essential for AP2 membrane dissociation. To identify mechanisms regulating synaptojanin1 recruitment, we compared synaptojanin1 CCV protein interactome levels and CCV protein interactions between both CCV classes from wt and knockout mice. We show that ITSN1 determines synaptojanin1 CCV levels. Sgip1/AP2 excess hinders synaptojanin1 binding to ITSN1, further lowering its levels. ITSN1 levels are determined by Eps15, not Eps15L1. In addition, the data reveal that reduced amounts of pacsin1 can be counter balanced by its enhanced activation. These data exemplify the complexity of CCV life cycle regulation and indicate how cargo proteins determine the life cycle of their CCV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。