Optimization of a Modular Nanotransporter Design for Targeted Intracellular Delivery of Photosensitizer

优化模块化纳米转运体设计以实现光敏剂的细胞内靶向输送

阅读:6
作者:Rena T Alieva, Alexey V Ulasov, Yuri V Khramtsov, Tatiana A Slastnikova, Tatiana N Lupanova, Maria A Gribova, Georgii P Georgiev, Andrey A Rosenkranz

Abstract

Modular nanotransporters (MNTs) are drug delivery systems for targeted cancer treatment. As MNTs are composed of several modules, they offer the advantage of high specificity and biocompatibility in delivering drugs to the target compartment of cancer cells. The large carrier module brings together functioning MNT modules and serves as a platform for drug attachment. The development of smaller-sized MNTs via truncation of the carrier module appears advantageous in facilitating tissue penetration. In this study, two new MNTs with a truncated carrier module containing either an N-terminal (MNTN) or a C-terminal (MNTC) part were developed by genetic engineering. Both new MNTs demonstrated a high affinity for target receptors, as revealed by fluorescent-labeled ligand-competitive binding. The liposome leakage assay proved the endosomolytic activity of MNTs. Binding to the importin heterodimer of each truncated MNT was revealed by a thermophoresis assay, while only MNTN possessed binding to Keap1. Finally, the photodynamic efficacy of the photosensitizer attached to MNTN was significantly higher than when attached to either MNTC or the original MNTs. Thus, this work reveals that MNT's carrier module can be truncated without losing MNT functionality, favoring the N-terminal part of the carrier module due to its ability to bind Keap1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。