Unveiling the Antiviral Potential of Minocycline: Modulation of Nuclear Export of Viral Ribonuclear Proteins during Influenza Virus Infection

揭示米诺环素的抗病毒潜力:流感病毒感染期间对病毒核糖核蛋白核输出的调节

阅读:5
作者:Priyanka Saha, Ritubrita Saha, Ratul Datta Chaudhuri, Rakesh Sarkar, Mehuli Sarkar, Hemanta Koley, Mamta Chawla-Sarkar

Abstract

Influenza A virus (IAV) poses a global threat worldwide causing pandemics, epidemics, and seasonal outbreaks. Annual modification of vaccines is costly due to continual shifts in circulating genotypes, leading to inadequate coverage in low- and middle-income countries like India. Additionally, IAVs are evolving resistance to approved antivirals, necessitating a search for alternative treatments. In this study, the antiviral role of the FDA-approved antibiotic minocycline against IAV strains was evaluated in vitro and in vivo by quantifying viral gene expression by qRT-PCR, viral protein levels by Western blotting, and viral titers. Our findings demonstrate that minocycline at a non-toxic dose effectively inhibits IAV replication, regardless of viral strain or cell line. Its antiviral mechanism operates independently of interferon signaling by targeting the MEK/ERK signaling pathway, which is crucial for the export of viral ribonucleoproteins (vRNPs). Minocycline prevents the assembly and release of infectious viral particles by causing the accumulation of vRNPs within the nucleus. Moreover, minocycline also inhibits IAV-induced late-stage apoptosis, further suppressing viral propagation. The antiviral activity of minocycline against IAVs could offer a promising solution amidst the challenges posed by influenza and the limitations of current treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。