Myotube formation on micropatterns guiding by centripetal cellular motility and crowding

在向心细胞运动和拥挤的引导下,微图案上的肌管形成

阅读:5
作者:Jie Gao, Xiang Sun, Yanning Ma, Wen Qin, Jin Li, Zuolin Jin, Jun Qiu, Hao Zhang

Abstract

The physical microenvironment, including substrate rigidity and topology, impacts myoblast differentiation and myotube maturation. However, the interplay effect and physical mechanism of mechanical stimuli on myotube formation is poorly understood. In this study, we utilized elastic substrates, microcontact patterning technique, and particle image velocimetry to investigate the effect of substrate rigidity and topological constraints on myoblast behaviors. Our findings suggested the interplay of substrate stiffness and cellular confinement improved the myotube formation by inducing centripetal cellular motility. These results shed light on the impact of the topological substrate on myoblast differentiation and emphasize the critical role of asymmetrical cell motility during this process, which is highly correlated with cell movement and crowding. Our research provides insights into the intricate interplay between substrate properties, cell motility, and myotube formation during myogenesis. Understanding these mechanisms could trigger tissue engineering strategies and therapies to enhance muscle regeneration and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。