Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity

系统性筛选可识别靶向 RAD51 和 RAD51D 以增强化学敏感性的 miRNA

阅读:5
作者:Jen-Wei Huang, Yemin Wang, Kiranjit K Dhillon, Philamer Calses, Emily Villegas, Patrick S Mitchell, Muneesh Tewari, Christopher J Kemp, Toshiyasu Taniguchi

Abstract

Homologous recombination mediates error-free repair of DNA double-strand breaks (DSB). RAD51 is an essential protein for catalyzing homologous recombination and its recruitment to DSBs is mediated by many factors including RAD51, its paralogs, and breast/ovarian cancer susceptibility gene products BRCA1/2. Deregulation of these factors leads to impaired DNA repair, genomic instability, and cellular sensitivity to chemotherapeutics such as cisplatin and PARP inhibitors. microRNAs (miRNA) are short, noncoding RNAs that posttranscriptionally regulate gene expression; however, the contribution of miRNAs in the regulation of homologous recombination is not well understood. To address this, a library of human miRNA mimics was systematically screened to pinpoint several miRNAs that significantly reduce RAD51 foci formation in response to ionizing radiation in human osteosarcoma cells. Subsequent study focused on two of the strongest candidates, miR-103 and miR-107, as they are frequently deregulated in cancer. Consistent with the inhibition of RAD51 foci formation, miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA-damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. Furthermore, endogenous regulation of RAD51D by miR-103/107 was observed in several tumor subtypes. Taken together, these data show that miR-103 and miR-107 overexpression promotes genomic instability and may be used therapeutically to chemosensitize tumors. Implications: These findings demonstrate a role for miR-103 and -107 in regulating DNA damage repair, thereby identifying new players in the progression of cancer and response to chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。