A genetically small fetus impairs placental adaptations near term

遗传性小胎儿会损害近期胎盘的适应能力

阅读:5
作者:Ionel Sandovici, Olatejumoye Knee, Jorge Lopez-Tello, Norman Shreeve, Abigail L Fowden, Amanda N Sferruzzi-Perri, Miguel Constância

Abstract

The placenta is a gatekeeper between the mother and fetus, adapting its structure and functions to support optimal fetal growth. Studies exploring adaptations of placentae that support the development of genetically small fetuses are lacking. Here, using a mouse model of impaired fetal growth, achieved by deleting insulin-like growth factor 2 (Igf2) in the epiblast, we assessed placental nutrient transfer and umbilical artery (UA) blood flow during late gestation. At embryonic day (E) 15.5, we observed a decline in the trans-placental flux of glucose and system A amino acids (by using 3H-MeG and 14C-MeAIB), proportionate to the diminished fetal size, whereas UA blood flow was normal. However, at E18.5, the trans-placental flux of both tracers was disproportionately decreased and accompanied by blunted UA blood flow. Feto-placental growth and nutrient transfer were more impaired in female conceptuses. Thus, reducing the fetal genetic demand for growth impairs the adaptations in placental blood flow and nutrient transport that normally support the fast fetal growth during late gestation. These findings have important implications for our understanding of the pathophysiology of pregnancies afflicted by fetal growth restriction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。