Long-range repression by ecdysone receptor on complex enhancers of the insulin receptor gene

蜕皮激素受体对胰岛素受体基因复合增强子的长期抑制

阅读:8
作者:Katie D Thompson, Will Suber, Rachel Nicholas, David N Arnosti

Abstract

The insulin signalling pathway is evolutionarily conserved throughout metazoans, playing key roles in development, growth, and metabolism. Misregulation of this pathway is associated with a multitude of disease states including diabetes, cancer, and neurodegeneration. The human insulin receptor gene (INSR) is widely expressed throughout development and was previously described as a 'housekeeping' gene. Yet, there is abundant evidence that this gene is expressed in a cell-type specific manner, with dynamic regulation in response to environmental signals. The Drosophila insulin-like receptor gene (InR) is homologous to the human INSR gene and was previously shown to be regulated by multiple transcriptional elements located primarily within the introns of the gene. These elements were roughly defined in ~1.5 kbp segments, but we lack an understanding of the potential detailed mechanisms of their regulation. We characterized the substructure of these cis-regulatory elements in Drosophila S2 cells, focusing on regulation through the ecdysone receptor (EcR) and the dFOXO transcription factor. By identifying specific locations of activators and repressors within 300 bp subelements, we show that some previously identified enhancers consist of relatively compact clusters of activators, while others have a distributed architecture not amenable to further reduction. In addition, these assays uncovered a long-range repressive action of unliganded EcR. The complex transcriptional circuitry likely endows InR with a highly flexible and tissue-specific response to tune insulin signalling. Further studies will provide insights to demonstrate the impact of natural variation in this gene's regulation, applicable to human genetic studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。