Phosphorylated LASS2 inhibits prostate carcinogenesis via negative regulation of Wnt/β-catenin signaling

磷酸化的 LASS2 通过负向调节 Wnt/β-catenin 信号来抑制前列腺癌变

阅读:5
作者:Kuangen Zhang, Rui Wu, Fang Mei, Yuhe Zhou, Lin He, Yanhua Liu, Xuyang Zhao, Jiangfeng You, Beiying Liu, Qingyang Meng, Fei Pei

Abstract

LASS2 is a novel tumor-suppressor gene and has been characterized as a ceramide synthase, which synthesizes very-long acyl chain ceramides. However, LASS2 function and pathway-related activity in prostate carcinogenesis are still largely unexplored. Here, we firstly report that LASS2 promotes β-catenin degradation through physical interaction with STK38, SCYL2, and ATP6V0C via the ubiquitin-proteasome pathway, phosphorylation of LASS2 is essential for β-catenin degradation, and serine residue 248 of LASS2 is illustrated to be a key phosphorylation site. Furthermore, we find that dephosphorylation of LASS2 at serine residue 248 significantly enhances prostate cancer cell growth and metastasis in vivo, indicating that phosphorylated LASS2 inhibits prostate carcinogenesis through negative regulation of Wnt/β-catenin signaling. Thus, our findings implicate LASS2 as a potential biomarker and therapeutic target of prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。