Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly

最大力量训练可增加老年人肌肉力量产生能力和无氧 ATP 合成通量,而不会改变收缩成本

阅读:6
作者:Ole Kristian Berg, Oh Sung Kwon, Thomas J Hureau, Heather L Clifton, Taylor Thurston, Yann Le Fur, Eun-Kee Jeong, Markus Amann, Russel S Richardson, Joel D Trinity, Eivind Wang, Gwenael Layec

Abstract

Aging is associated with a progressive decline in skeletal muscle function, then leading to impaired exercise tolerance. Maximal strength training (MST) appears to be a practical and effective intervention to increase both exercise capacity and efficiency. However, the underlying physiological mechanisms responsible for these functional improvements are still unclear. Accordingly, the purpose of this study was to examine the intramuscular and metabolic adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older individuals (75 ± 9 yrs) by employing a combination of molecular, magnetic resonance 1H-imaging and 31P-spectroscopy, muscle biopsies, motor nerve stimulation, and indirect calorimetry techniques. Dynamic and isometric muscle strength were both significantly increased by MST. The greater torque-time integral during sustained isometric maximal contraction post-MST (P = 0.002) was associated with increased rates of ATP synthesis from anaerobic glycolysis (PRE: 10 ± 7 mM·min-1; POST: 14 ± 7 mM·min-1, P = 0.02) and creatine kinase reaction (PRE: 31 ± 10 mM·min-1; POST: 41 ± 10 mM·min-1, P = 0.006) such that the ATP cost of contraction was not significantly altered. Expression of fast myosin heavy chain, quadriceps muscle volume, and submaximal cycling net efficiency were also increased with MST (P = 0.005; P = 0.03 and P = 0.03, respectively). Overall, MST induced a shift toward a more glycolytic muscle phenotype allowing for greater muscle force production during sustained maximal contraction. Consequently, some of the MST-induced improvements in exercise tolerance might stem from a greater anaerobic capacity to generate ATP, while the improvement in exercise efficiency appears to be independent from an alteration in the ATP cost of contraction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。