Repression of GRIM19 expression potentiates cisplatin chemoresistance in advanced bladder cancer cells via disrupting ubiquitination-mediated Bcl-xL degradation

抑制 GRIM19 表达可破坏泛素化介导的 Bcl-xL 降解,从而增强晚期膀胱癌细胞对顺铂的化学耐药性

阅读:7
作者:Feng Ni, Chang-You Yan, Sheng Zhou, Peng-Yu Hui, Yong-Hui Du, Liang Zheng, Jin Yu, Xiao-Jian Hu, Zhi-Gang Zhang

Conclusions

Disruption of GRIM19/Bcl-xL is a key mechanism of CDDP resistance in advanced BC. Therapeutically, enhancement of GRIM19 expression or employment of p38/JNK inhibitors may serve as resensitizing therapies for subgroups of CDDP-resistant or refractory BC patients.

Methods

RT-qPCR and immunoblotting were employed to evaluate the expression profile of GRIM19 in clinical BC samples and in different BC cells. Using cell viability assay, apoptotic ELISA, xenografts mouse model, and Transwell assay, the effects of GRIM19 inhibition or GRIM19 overexpression on CDDP resistance were determined in different BC cells. Lastly, using co-immunoprecipitation, we provided the molecular evidence for the interaction between GRIM19 and Bcl-xL.

Objective

The mainstay of treatment for advanced bladder cancer (BC) is cisplatin (CDDP)-based systematic chemotherapy. However, acquired chemoresistance induced by as yet unidentified mechanisms is encountered frequently and often

Results

Expression levels of GRIM19 were significantly down-regulated in recurrent BC specimens, and in experimentally induced CDDP-resistant BC cells. Functionally, overexpression of the exogenous GRIM19 potentiated CDDP sensitivity and suppressed the survival and invasion of BC cells in the presence of CDDP challenge. Mechanistically, the compromised CDDP chemosensitization induced by GRIM19 loss was at least partially attributed to the attenuation of Bcl-xL polyubiquitination and subsequent degradation, because (1) GRIM19 colocalized with Bcl-xL in the mitochondria of BC cells and (2) GRIM19 overexpression promoted the ubiquitination of Bcl-xL, and this event could be effectively reversed by pretreatment with inhibitors of p38-MAPK and JNK pathways, indicating that GRIM19 overexpression-induced Bcl-xL ubiquitination may achieve in a p38/JNK-dependent manner. Using the UMUC-3 cells stably depleted of endogenous GRIM19, we further show that inhibition of Bcl-xL rectified GRIM19 deficiency-caused CDDP resistance in BC cells. In addition, BCL2L1 mRNA levels were negatively correlated with GRIM19 mRNA levels in CDDP-associated clinical BC tissues. Conclusions: Disruption of GRIM19/Bcl-xL is a key mechanism of CDDP resistance in advanced BC. Therapeutically, enhancement of GRIM19 expression or employment of p38/JNK inhibitors may serve as resensitizing therapies for subgroups of CDDP-resistant or refractory BC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。