A suitable and efficient optimization system for the culture of Chlamydia trachomatis in adult inclusion conjunctivitis

成人包涵体结膜炎沙眼衣原体培养适宜高效优化体系

阅读:6
作者:Yuan Wei, Xizhan Xu, Leying Wang, Qiankun Chen, Jinsong Li, Xiafei Liu, Zhenyu Wei, Jinding Pang, Yan Peng, Xiaoyan Guo, Zhen Cheng, Zhiqun Wang, Yang Zhang, Kexin Chen, Xinxin Lu, Qingfeng Liang

Abstract

The prevalence of Chlamydia trachomatis infection in the genitourinary tract is increasing, with an annual rise of 9 million cases. Individuals afflicted with these infections are at a heightened risk of developing adult inclusive conjunctivitis (AIC), which is commonly recognized as the ocular manifestation of this sexually transmitted infection. Despite its significant clinical implications, the lack of distinctive symptoms and the overlap with other ocular conditions often lead to underdiagnosis or misdiagnosis of AIC associated with C. trachomatis infection. Here, we established six distinct C. trachomatis culture cell lines, specifically highlighting the MA104 N*V cell line that exhibited diminished expression of interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 1 (STAT1), resulting in reduced interferons. Infected MA104 N*V cells displayed the highest count of intracytoplasmic inclusions detected through immunofluorescence staining, peaking at 48 h postinfection. Subsequently, MA104 N*V cells were employed for clinical screening in adult patients diagnosed with AIC. Among the evaluated cohort of 20 patients, quantitative PCR (qPCR) testing revealed positive results in seven individuals, indicating the presence of C. trachomatis infection. Furthermore, the MA104 N*V cell cultures derived from these infected patients demonstrated successful cultivation and replication of the pathogen, confirming its viability and infectivity. Molecular genotyping identified four distinct urogenital serovars, with serovar D being the most prevalent (4/7), followed by E (1/7), F (1/7), and Ia (1/7). This novel cellular model contributes to studies on C. trachomatis pathogenesis, molecular mechanisms, and host-pathogen interactions both in vitro and in vivo. It also aids in acquiring clinically relevant strains critical for advancing diagnostics, treatments, and vaccines against C. trachomatis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。