Nonhomologous end joining and homologous recombination involved in luteolin-induced DNA damage in DT40 cells

非同源末端连接和同源重组与木犀草素诱导的 DT40 细胞 DNA 损伤有关

阅读:6
作者:Cuifang Xiang, Xiaohua Wu, Zilu Zhao, Xiaoyu Feng, Xin Bai, Xin Liu, Jingxia Zhao, Shunichi Takeda, Yong Qing

Abstract

Luteolin (3',4',5,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been shown to have anticancer activity in many types of cancer cell lines. The anticancer capacity of luteolin may be related to its ability to induce DNA double-strand breaks (DSBs). Here, we used DT40 cells to determine whether nonhomologous end joining (NHEJ) and homologous recombination (HR) are involved in the repair mechanism of luteolin-induced DNA damage. Cells defective in Ku70 (an enzyme associated with NHEJ) or Rad54 (an enzyme essential for HR) were hypersensitive and presented more apoptosis in response to luteolin. Moreover, the sensitivity and apoptosis of Ku70-/- and Rad54-/- cells were associated with increased DNA damage when the numbers of γ-H2AX foci and chromosomal aberrations (CAs) were compared with those from WT cells. Additionally, after treatment with luteolin, Ku70-/- cells presented more Top2 covalent cleavage complexes (Top2cc). These results indicated that luteolin induced DSBs in DT40 cells and demonstrated that both NHEJ and HR participated in the repair of luteolin-induced DSBs, which might be related to the inhibition of topoisomerases. These results imply that simultaneous inhibition of NHEJ and HR with luteolin treatment would provide a powerful protocol in cancer chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。