DNA repair in plant mitochondria - a complete base excision repair pathway in potato tuber mitochondria

植物线粒体中的 DNA 修复 - 马铃薯块茎线粒体中的完整碱基切除修复途径

阅读:5
作者:Beatriz Ferrando, Ana L D M Furlanetto, Ricardo Gredilla, Jesper F Havelund, Kim H Hebelstrup, Ian M Møller, Tinna Stevnsner

Abstract

Mitochondria are one of the major sites of reactive oxygen species (ROS) production in the plant cell. ROS can damage DNA, and this damage is in many organisms mainly repaired by the base excision repair (BER) pathway. We know very little about DNA repair in plants especially in the mitochondria. Combining proteomics, bioinformatics, western blot and enzyme assays, we here demonstrate that the complete BER pathway is found in mitochondria isolated from potato (Solanum tuberosum) tubers. The enzyme activities of three DNA glycosylases and an apurinic/apyrimidinic (AP) endonuclease (APE) were characterized with respect to Mg2+ dependence and, in the case of the APE, temperature sensitivity. Evidence for the presence of the DNA polymerase and the DNA ligase, which complete the repair pathway by replacing the excised base and closing the gap, was also obtained. We tested the effect of oxidative stress on the mitochondrial BER pathway by incubating potato tubers under hypoxia. Protein carbonylation increased significantly in hypoxic tuber mitochondria indicative of increased oxidative stress. The activity of two BER enzymes increased significantly in response to this oxidative stress consistent with the role of the BER pathway in the repair of oxidative damage to mitochondrial DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。