DNA methylation and gene deletion analysis of brain metastases in melanoma patients identifies mutually exclusive molecular alterations

黑色素瘤患者脑转移的 DNA 甲基化和基因缺失分析确定了相互排斥的分子改变

阅读:4
作者:Diego M Marzese, Richard A Scolyer, Maria Roqué, Laura M Vargas-Roig, Jamie L Huynh, James S Wilmott, Rajmohan Murali, Michael E Buckland, Garni Barkhoudarian, John F Thompson, Donald L Morton, Daniel F Kelly, Dave S B Hoon

Background

The brain is a common target of metastases for melanoma patients. Little is known about the genetic and epigenetic alterations in melanoma brain metastases (MBMs). Unraveling these molecular alterations is a key step in understanding their aggressive nature and identifying novel therapeutic targets.

Conclusions

Melanoma cells that colonize the brain harbor numerous genetically and epigenetically altered genes. This study presents an integrated genomic and epigenomic analysis that reveals MBM-specific molecular alterations and mutually exclusive molecular subtypes.

Methods

Genome-wide DNA methylation analyses of MBMs (n = 15) and normal brain tissues (n = 91) and simultaneous multigene DNA methylation and gene deletion analyses of metastatic melanoma tissues (99 MBMs and 43 extracranial metastases) were performed. BRAF and NRAS mutations were evaluated in MBMs by targeted sequencing.

Results

MBMs showed significant epigenetic heterogeneity. RARB, RASSF1, ESR1, APC, PTEN, and CDH13 genes were frequently hypermethylated. Deletions were frequently detected in the CDKN2A/B locus. Of MBMs, 46.1% and 28.8% had BRAF and NRAS missense mutations, respectively. Compared with lung and liver metastases, MBMs exhibited higher frequency of CDH13 hypermethylation and CDKN2A/B locus deletion. Mutual exclusivity between hypermethylated genes and CDKN2A/B locus deletion identified 2 clinically relevant molecular subtypes of MBMs. CDKN2A/B deletions were associated with multiple MBMs and frequently hypermethylated genes with shorter time to brain metastasis. Conclusions: Melanoma cells that colonize the brain harbor numerous genetically and epigenetically altered genes. This study presents an integrated genomic and epigenomic analysis that reveals MBM-specific molecular alterations and mutually exclusive molecular subtypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。