Modelling Microglial Innate Immune Memory In Vitro: Understanding the Role of Aerobic Glycolysis in Innate Immune Memory

体外模拟小胶质细胞先天免疫记忆:了解有氧糖酵解在先天免疫记忆中的作用

阅读:7
作者:Morgan Towriss, Brian MacVicar, Annie Vogel Ciernia

Abstract

Microglia, the resident macrophages of the central nervous system, play important roles in maintaining brain homeostasis and facilitating the brain's innate immune responses. Following immune challenges microglia also retain immune memories, which can alter responses to secondary inflammatory challenges. Microglia have two main memory states, training and tolerance, which are associated with increased and attenuated expression of inflammatory cytokines, respectively. However, the mechanisms differentiating these two distinct states are not well understood. We investigated mechanisms underlying training versus tolerance memory paradigms in vitro in BV2 cells using B-cell-activating factor (BAFF) or bacterial lipopolysaccharide (LPS) as a priming stimulus followed by LPS as a second stimulus. BAFF followed by LPS showed enhanced responses indicative of priming, whereas LPS followed by LPS as the second stimulus caused reduced responses suggestive of tolerance. The main difference between the BAFF versus the LPS stimulus was the induction of aerobic glycolysis by LPS. Inhibiting aerobic glycolysis during the priming stimulus using sodium oxamate prevented the establishment of the tolerized memory state. In addition, tolerized microglia were unable to induce aerobic glycolysis upon LPS restimulus. Therefore, we conclude that aerobic glycolysis triggered by the first LPS stimulus was a critical step in the induction of innate immune tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。