Sex-specific extracellular matrix remodeling during early adipogenic differentiation by gestational bisphenol A exposure

妊娠期双酚 A 暴露导致早期脂肪形成分化过程中性别特异性细胞外基质重塑

阅读:8
作者:Yong Pu, Elvis Ticiani, Anita A Waye, Kunzhe Dong, Huanmin Zhang, Almudena Veiga-Lopez

Abstract

Bisphenol A (BPA) is an endocrine disrupting chemical known to promote adipose tissue mass in vivo and adipogenesis in vitro. Whether BPA can affect and reprogram early adipogenic differentiation signals that trigger adipogenic differentiation, remains unknown. We hypothesized that gestational BPA exposure results in a preadipocyte phenotype that leads to accelerated adipogenic differentiation, and that this phenotype is sex specific. Primary ovine fetal preadipocytes were derived from control (C) and BPA-exposed during pregnancy and differentiated in vitro. Gestational BPA enhanced lipid accumulation at early stages of differentiation (48 h) and this was evident in females but not male-derived fetal preadipocytes. After an RNA sequencing approach, samples were compared as follows: 2 groups (C vs. BPA); 2 sexes (female (F) vs. male (M)); and 2 time points (0 h vs. 48 h). Before differentiation, 15 genes were differentially expressed between the C and the BPA-exposed preadipocytes within sex. In BPA-F, extracellular matrix remodeling genes cathepsin K and collagen 5α3 were upregulated compared to C-F. At 48 h, BPA-F had 154 genes differentially expressed vs. C-F and BPA-M had 487 genes differentially expressed vs. C-M. Triglyceride and glycerophospholipid metabolism were the most upregulated pathways in BPA-F. Downregulated pathways were associated with extracellular matrix organization in BPA-exposed preadipocytes. These findings are among the first to demonstrate that gestational BPA can modify the fate of adipocyte precursors by altering pathways associated to extracellular matrix components, an often-disregarded, but required aspect of adipogenic differentiation. This work highlights the need to investigate early adipogenic differentiation changes in other obesogenic chemicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。