Bis(thio)carbohydrazone Luminogens with AIEE and ACQ Features and Their In Silico Investigations with SARS-CoV-2

具有 AIEE 和 ACQ 特征的双(硫)卡巴肼发光剂及其与 SARS-CoV-2 的计算机模拟研究

阅读:8
作者:K K Mohammed Hashim, E Manoj, M R Prathapachandra Kurup

Abstract

Herein, we report two novel multidentate luminogen proligands bis(3,5-diiodosalicylidene) carbohydrazone (H4L1) and bis(3,5-diiodosalicylidene) thiocarbohydrazone (H4L2), which are suitable candidates for biomedical applications. Though the thiocarbohydrazone H4L2 shows aggregation caused quenching (ACQ), the carbohydrazone H4L1 exhibits stronger fluorescence due to aggregation induced emission enhancement (AIEE). Molecular docking studies of H4L1 and H4L2 along with four similar (thio)carbohydrazones with the active sites of SARS-CoV-2 main protease 3CLpro reveals that the thiocarbohydrazones, in general, are showing better propensity compared to their oxygen analogues. Both the thiocarbohydrazones and the carbohydrazones, however, exhibit better binding potential at the active sites than that of some of the repurposed drugs such as chloroquine, hydroxychloroquine, lopinavir, ritonavir, darunavir and remdesivir. Also, the carbohydrazone H4L1 can be a better bioprobe compared to H4L2 as the former is found to have better binding potential with SARS-CoV-2 spike glycoprotein along with AIEE feature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。