Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs

评估静电粒子电离技术对减少猪只空气传播病原体的效果

阅读:6
作者:Carmen Alonso, Peter C Raynor, Peter R Davies, Robert B Morrison, Montserrat Torremorell

Abstract

Influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Staphylococcus aureus are important swine pathogens capable of being transmitted via aerosols. The electrostatic particle ionization system (EPI) consists of a conductive line that emits negative ions that charge particles electrically resulting in the settling of airborne particles onto surfaces and potentially decreasing the risk of pathogen dissemination. The objectives of this study were to determine the effect of the EPI system on the quantity and viability of IAV, PRRSV, PEDV and S. aureus in experimentally generated aerosols and in aerosols generated by infected animals. Efficiency at removing airborne particles was evaluated as a function of particle size (ranging from 0.4 to 10 µm), distance from the source of ions (1, 2 and 3 m) and relative air humidity (RH 30 vs. 70 %). Aerosols were sampled with the EPI system "off" and "on." Removal efficiency was significantly greater for all pathogens when the EPI line was the closest to the source of aerosols. There was a greater reduction for larger particles ranging between 3.3 and 9 µm, which varied by pathogen. Overall airborne pathogen reduction ranged between 0.5 and 1.9 logs. Viable pathogens were detected with the EPI system "on," but there was a trend to reducing the quantity of viable PRRSV and IAV. There was not a significant effect on the pathogens removal efficiency based on the RH conditions tested. In summary, distance to the source of ions, type of pathogen and particle size influenced the removal efficiency of the EPI system. The reduction in infectious agents in the air by the EPI technology could potentially decrease the microbial exposure for pigs and people in confinement livestock facilities.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。