CRISPR-Cas9-mediated loss of function of β-catenin attenuates intervertebral disc degeneration

CRISPR-Cas9 介导的 β-catenin 功能丧失可减轻椎间盘退变

阅读:7
作者:Yunshan Fan, Lan Zhao, Yumei Lai, Ke Lu, Jian Huang

Abstract

Intervertebral disc degeneration is a very common medical condition causing pain and disability, and it cannot be reversed by available treatment options. Here we report that targeting β-catenin, a pivotal factor associated with disc degeneration, ameliorates disc degeneration in a mouse model of disc injury. Degenerative changes in the disc in response to disc injury include decompression of nucleus pulposus (NP), replacement of notochordal cells in the NP by chondrocyte-like cells, and disorganization of annulus fibrosus (AF). Importantly, downregulation of β-catenin through intradiscal injection of CRISPR-Cas9-expressing adeno-associated virus significantly mitigated all these pathological changes, by preserving notochordal cells and attenuating chondro-osteogenesis in the NP, as well as maintaining the AF structure. Moreover, β-catenin loss-of-function decelerated the rapid induction of catabolic reactions in disc matrix and attenuated pain-related neural events during disc degeneration. Thus, our data demonstrate that targeting β-catenin in disc cells through CRISPR-Cas9 has multifaceted therapeutic effects on disc degeneration, and we suggest that β-catenin plays a fundamental role in the remodeling and degenerative processes of the disc. In addition, this study proposes that CRISPR-Cas9 is a useful tool for identifying new drug targets and developing therapeutic strategies for disc degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。