A Protocol for Transcriptome-Wide Inference of RNA Metabolic Rates in Mouse Embryonic Stem Cells

小鼠胚胎干细胞中 RNA 代谢率的转录组范围推断方案

阅读:5
作者:Adriano Biasini, Ana Claudia Marques

Abstract

The relative ease of mouse Embryonic Stem Cells (mESCs) culture and the potential of these cells to differentiate into any of the three primary germ layers: ectoderm, endoderm and mesoderm (pluripotency), makes them an ideal and frequently used ex vivo system to dissect how gene expression changes impact cell state and differentiation. These efforts are further supported by the large number of constitutive and inducible mESC mutants established with the aim of assessing the contributions of different pathways and genes to cell homeostasis and gene regulation. Gene product abundance is controlled by the modulation of the rates of RNA synthesis, processing, and degradation. The ability to determine the relative contribution of these different RNA metabolic rates to gene expression control using standard RNA-sequencing approaches, which only capture steady state abundance of transcripts, is limited. In contrast, metabolic labeling of RNA with 4-thiouridine (4sU) coupled with RNA-sequencing, allows simultaneous and reproducible inference of transcriptome wide synthesis, processing, and degradation rates. Here we describe, a detailed protocol for 4sU metabolic labeling in mESCs that requires short 4sU labeling times at low concentration and minimally impacts cellular homeostasis. This approach presents a versatile method for in-depth characterization of the gene regulatory strategies governing gene steady state abundance in mESC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。