Fentanyl inhibits the progression of gastric cancer through the suppression of MMP-9 via the PI3K/Akt signaling pathway

芬太尼通过抑制 PI3K/Akt 信号通路 MMP-9 抑制胃癌进展

阅读:7
作者:Chunlai Li, Yi Qin, Yu Zhong, Yinying Qin, Yi Wei, Li Li, Yubo Xie

Background

Fentanyl is a drug commonly used for perioperative and postoperative analgesia. Previous studies have confirmed that fentanyl can affect the progression of gastric cancer; however, this effect has not yet been elucidated. The

Conclusions

Fentanyl inhibits the proliferation, invasion and migration of gastric cancer cells by inhibiting the PI3K/Akt/MMP-9 pathway, which could be very useful for gastric cancer treatment.

Methods

A CCK-8 assay was used to determine the proliferation of MGC-803 cells, while Transwell assay and wound healing assay were used to determine the invasion and migration abilities, respectively. Apoptosis and the cell cycle were assessed by flow cytometry, and the ultrastructure of the cells was examined with a transmission electron microscope. The mRNA expression levels of serine-threonine protein kinase 1 (Akt-1), matrix metalloproteinase-9 (MMP-9), and death-associated protein kinase 1 (DAPK1) were evaluated by real-time (RT) quantitative PCR. The protein expression of p-Akt, MMP-9, and caspase-9 was detected by western blot analysis. To study the interaction of fentanyl with the phosphatidylinositol-3-kinase (PI3K)/Akt/MMP-9 pathway, PI3K inhibitor (LY294002) and MMP-9 inhibitor (SB-3CT) were used to treat the MGC-803 cells.

Results

Findings indicated that fentanyl inhibits the proliferation, invasion, and migration of MGC-803 cells. Specifically, fentanyl inhibits the expression of MMP-9 and enhances the expression of apoptosis-promoting factors such as caspase-9 and DAPK1 through the PI3K/Akt signaling pathway. Cell cycle arrest was observed in the G0/G1 phase. Furthermore, the inhibition of PI3K/Akt/MMP-9 by LY294002 and SB-3CT enhanced the anticancer effects of fentanyl. Conclusions: Fentanyl inhibits the proliferation, invasion and migration of gastric cancer cells by inhibiting the PI3K/Akt/MMP-9 pathway, which could be very useful for gastric cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。