Double-digest RADseq loci using standard Illumina indexes improve deep and shallow phylogenetic resolution of Lophodermium, a widespread fungal endophyte of pine needles

使用标准 Illumina 索引对 RADseq 基因座进行双重消化,可提高 Lophodermium(一种广泛分布的松针内生真菌)的深层和浅层系统发育分辨率

阅读:8
作者:Rodolfo Salas-Lizana, Ryoko Oono

Abstract

The phylogenetic and population genetic structure of symbiotic microorganisms may correlate with important ecological traits that can be difficult to directly measure, such as host preferences or dispersal rates. This study develops and tests a low-cost double-digest restriction site-associated DNA sequencing (ddRADseq) protocol to reveal among- and within-species genetic structure for Lophodermium, a genus of fungal endophytes whose evolutionary analyses have been limited by the scarcity of informative markers. The protocol avoids expensive barcoded adapters and incorporates universal indexes for multiplexing. We tested for reproducibility and functionality by comparing shared loci from sample replicates and assessed the effects of numbers of ambiguous sites and clustering thresholds on coverage depths, number of shared loci among samples, and phylogenetic reconstruction. Errors between technical replicates were minimal. Relaxing the quality-filtering criteria increased the mean coverage depth per locus and the number of loci recovered within a sample, but had little effect on the number of shared loci across samples. Increasing clustering threshold decreased the mean coverage depth per cluster and increased the number of loci recovered within a sample but also decreased the number of shared loci across samples, especially among distantly related species. The combination of low similarity clustering (70%) and relaxed quality-filtering (allowing up to 30 ambiguous sites per read) performed the best in phylogenetic analyses at both recent and deep genetic divergences. Hence, this method generated sufficient number of shared homologous loci to investigate the evolutionary relationships among divergent fungal lineages with small haploid genomes. The greater genetic resolution also revealed new structure within species that correlated with ecological traits, providing valuable insights into their cryptic life histories.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。