A small molecule that selectively inhibits the growth of Epstein-Barr virus-latently infected cancer cells

一种选择性抑制 Epstein-Barr 病毒潜伏感染癌细胞生长的小分子

阅读:6
作者:Ying Li, Shujuan Du, Kun Zhou, Yulin Zhang, Xiaoting Chen, Caixia Zhu, Yuping Jia, Yuyan Wang, Daizhou Zhang, Fang Wei, Yin Tong, Qiliang Cai

Abstract

Epstein-Barr virus (EBV), an oncogenic herpesvirus, is predominantly found in the latent infection form and is highly associated with many human malignancies, which mainly have poor prognoses and no effective treatments. Here, we obtained thirteen compounds from small-molecule libraries for specific inhibition of EBV-latently infected cell growth in vitro by high-throughput screening. Among them, cetrimonium bromide (CetB) was identified to selectively inhibit the growth of different EBV-infected B lymphoma cell lines. Importantly, CetB reduced EBNA1 protein stability, activated G1 arrest and early apoptosis of EBV-latently infected cells without viral lytic reactivation, which leads to dramatically inhibit colony formation and tumor growth of EBV-infected cells in vitro and in vivo, and significantly prolong the survival of tumor-bearing mice. Overall, these findings demonstrate that CetB acts as a highly selective inhibitor of the growth of EBV-infected cells and has the potential for further development of effective therapeutic strategies specific against EBV-associated cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。