Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation

用于治疗心房颤动的新型多功能白藜芦醇衍生物的表征

阅读:6
作者:Istvan Baczko, David Liknes, Wei Yang, Kevin C Hamming, Gavin Searle, Kristian Jaeger, Zoltan Husti, Viktor Juhasz, Gergely Klausz, Robert Pap, Laszlo Saghy, Andras Varro, Vernon Dolinsky, Shaohua Wang, Vivek Rauniyar, Dennis Hall, Jason Rb Dyck, Peter E Light

Background and purpose

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. Experimental approach: We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. Key

Purpose

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. Experimental approach: We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. Key

Results

C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC₅&sub0; of 0.36 and 0.11 μmol·L(-1) respectively. C1 inhibited I(KACh)(IC₅&sub0; of 1.9 μmol·L(-1)) and the Na(v)1.5 sodium channel current (IC₅&sub0;s of 3 and 1 μmol·L(-1) for peak and late components respectively). C1 (1 μmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。