Differential Expression of ABC Transporter Genes in Brain Vessels vs. Peripheral Tissues and Vessels from Human, Mouse and Rat

人类、小鼠和大鼠脑血管与外周组织和血管中 ABC 转运蛋白基因的差异表达

阅读:4
作者:Wandong Zhang, Qing Yan Liu, Arsalan S Haqqani, Ziying Liu, Caroline Sodja, Sonia Leclerc, Ewa Baumann, Christie E Delaney, Eric Brunette, Danica B Stanimirovic

Background

ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of ABC transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized.

Conclusions

This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.

Methods

In this study, the expression patterns of ABC transporter genes in brain microvessels, peripheral tissues (lung, liver and spleen) and lung vessels were investigated using RNA-seq and WesTM analyses in three species: human, mouse and rat.

Results

The study demonstrated that ABC drug efflux transporter genes (including ABCB1, ABCG2, ABCC4 and ABCC5) were highly expressed in isolated brain microvessels in all three species studied; the expression of ABCB1, ABCG2, ABCC1, ABCC4 and ABCC5 was generally higher in rodent brain microvessels compared to those of humans. In contrast, ABCC2 and ABCC3 expression was low in brain microvessels, but high in rodent liver and lung vessels. Overall, most ABC transporters (with the exception of drug efflux transporters) were enriched in peripheral tissues compared to brain microvessels in humans, while in rodent species, additional ABC transporters were found to be enriched in brain microvessels. Conclusions: This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。