CVB3 Inhibits NLRP3 Inflammasome Activation by Suppressing NF-κB Pathway and ROS Production in LPS-Induced Macrophages

CVB3 通过抑制 LPS 诱导的巨噬细胞中的 NF-κB 通路和 ROS 产生来抑制 NLRP3 炎症小体活化

阅读:5
作者:Yanqi Wang, Zhirong Sun, Hongkai Zhang, Yahui Song, Yi Wang, Wei Xu, Min Li

Abstract

Inflammasomes are cytosolic sensors of pathogens. Their activation can lead to the induction of caspase-1-mediated inflammatory responses and the release of several proinflammatory cytokines, including IL-1β. There is a complex relationship between viral infection and the nucleotide-binding oligomerization domain-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome. The activation of the NLRP3 inflammasome is essential for antiviral immunity, while excessive NLRP3 inflammasome activation may lead to excessive inflammation and pathological damage. Meanwhile, viruses have evolved strategies to suppress the activation of inflammasome signaling pathways, thus escaping immune responses. In this study, we investigated the inhibitory effect of coxsackievirus B3 (CVB3), a positive single-strand RNA virus, on the activation of the NLRP3 inflammasome in macrophages. CVB3-infected mice had significantly lower production of IL-1β and a lower level of NLRP3 in the small intestine after LPS stimulation. Furthermore, we found that CVB3 infection inhibited NLRP3 inflammasome activation and IL-1β production in macrophages by suppressing the NF-κB signaling pathway and ROS production. Additionally, CVB3 infection increased the susceptibility of mice to Escherichia coli infection by decreasing IL-1β production. Collectively, our study revealed a novel mechanism of NLRP3 inflammasome activation by suppressing the NF-κB pathway and ROS production in LPS-induced macrophages. Our findings may provide new ideas for antiviral treatment and drug development for CVB3 infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。