Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver-Russell syndrome phenotypes

人源化 H19/Igf2 基因座揭示小鼠和人类之间不同的印迹机制并反映 Silver-Russell 综合征表型

阅读:4
作者:Stella K Hur, Andrea Freschi, Folami Ideraabdullah, Joanne L Thorvaldsen, Lacey J Luense, Angela H Weller, Shelley L Berger, Flavia Cerrato, Andrea Riccio, Marisa S Bartolomei

Abstract

Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19(hIC1) We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19(+/hIC1) mice will elucidate the molecular mechanisms that may underlie SRS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。