DRUG-seq Provides Unbiased Biological Activity Readouts for Neuroscience Drug Discovery

DRUG-seq 为神经科学药物研发提供无偏的生物活性读数

阅读:5
作者:Jingyao Li, Daniel J Ho, Martin Henault, Chian Yang, Marilisa Neri, Robin Ge, Steffen Renner, Leandra Mansur, Alicia Lindeman, Brian Kelly, Tayfun Tumkaya, Xiaoling Ke, Gilberto Soler-Llavina, Gopi Shanker, Carsten Russ, Marc Hild, Caroline Gubser Keller, Jeremy L Jenkins, Kathleen A Worringer, Fred

Abstract

Unbiased transcriptomic RNA-seq data has provided deep insights into biological processes. However, its impact in drug discovery has been narrow given high costs and low throughput. Proof-of-concept studies with Digital RNA with pertUrbation of Genes (DRUG)-seq demonstrated the potential to address this gap. We extended the DRUG-seq platform by subjecting it to rigorous testing and by adding an open-source analysis pipeline. The results demonstrate high reproducibility and ability to resolve the mechanism(s) of action for a diverse set of compounds. Furthermore, we demonstrate how this data can be incorporated into a drug discovery project aiming to develop therapeutics for schizophrenia using human stem cell-derived neurons. We identified both an on-target activation signature, induced by a set of chemically distinct positive allosteric modulators of the N-methyl-d-aspartate (NMDA) receptor, and independent off-target effects. Overall, the protocol and open-source analysis pipeline are a step toward industrializing RNA-seq for high-complexity transcriptomics studies performed at a saturating scale.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。