Optimizing silicon doping levels for enhanced osteogenic and angiogenic properties of 3D-printed biphasic calcium phosphate scaffolds: An in vitro screening and in vivo validation study

优化硅掺杂水平以增强 3D 打印双相磷酸钙支架的成骨和血管生成特性:体外筛选和体内验证研究

阅读:6
作者:Teliang Lu, Guohao Li, Luhui Zhang, Xinyuan Yuan, Tingting Wu, Jiandong Ye

Abstract

Biphasic calcium phosphate (BCP) ceramics are valued for their osteoconductive properties but have limited osteogenic and angiogenic activities, which restricts their clinical utility in bone defect repair. Silicon doping has emerged as an effective strategy to enhance these biological functions of BCP. However, the biological impact of BCP is influenced by the level of silicon doping, necessitating determination of the optimal concentration to maximize efficacy in bone repair. This study investigated the effects of silicon doping on both the physicochemical and biological properties of BCP, with a specific focus on osteogenic and angiogenic potentials. Results indicated that silicon doping exceeding 4 mol.% led to the formation of α-TCP, accelerating BCP degradation, enhancing silicon ion release, and promoting mineralization product formation. Simultaneously, silicon doping increased the porosity of BCP scaffolds, which typically reduces their compressive strength. Nevertheless, scaffolds doped with ≤4 mol.% silicon maintained compressive strengths exceeding 2 MPa. In vitro biological experiments indicated that higher levels of silicon doping (≥6 mol.%) partially inhibited the successful differentiation of stem cells and the vascularization of endothelial cells. Optimal conditions for promoting osteogenic differentiation and angiogenesis were identified between 2 and 4 mol.% silicon doping, with an optimal level of approximately 4 mol.%. Subsequent in vivo experiments confirmed that BCP scaffolds doped with 4 mol.% silicon effectively promoted vascularization and new bone formation, highlighting their potential for clinical bone defect repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。