LncRNA NORAD regulates scar hypertrophy via miRNA-26a mediating the regulation of TGFβR1/2

LncRNA NORAD 通过 miRNA-26a 介导 TGFβR1/2 的调节来调节瘢痕增生

阅读:5
作者:Jun Qi, Yangyang Wu, Haijian Zhang, Yifei Liu

Background

Transforming growth factor-β (TGF-β) pathway presents dysregulation in pathological scarring and mediates hypertrophic scar (HS) formation. Objectives: The study aims to analyze the potential mechanism of long non-coding RNA NORAD (LncRNA NORAD) and microRNA (miR-26a) regulation of the TGF-β pathway in hypertrophic scar fibroblasts (HSFs). Material and

Conclusions

LncRNA NORAD regulates HSF proliferation via miR-26a mediating the regulation of TGF-βR2/R1. LncRNA NORAD/miR-26a could be a potential target for treating HS.

Material and methods

Hypertrophic scar tissues were collected and assayed for LncRNA NORAD, miR-26a, transforming growth factor β receptor I (TGF-βR1) and TGF-βR2, with enzyme-linked immunosorbent assay (ELISA) or qualitative polymerase chain reaction (qPCR). LncRNA NORAD interfering plasmids were transfected into HSFs and induced with TGF-β1. Cell Counting Kit-8 (CCK-8) assays were performed to assess HSF proliferation, and flow cytometry to analyze apoptosis and the cell cycle. TGF-βR1, TGF-βR2, Smad2, and p-Smad2 levels were detected using western blot (WB). The related proteins (p21, cyclin D1 and cyclin-dependent kinase 4 (CDK4)) regulating the cell cycle, and apoptosis-related proteins (caspase-3 and Bcl-2) were also detected using WB. The binding sites of miRNA-26a and LncRNA NORAD, TGF-βR2, or UBE3A were predicted using Starbase and confirmed with dual luciferase reporter assay. RNA immunoprecipitation (RIP) was utilized to explore the interplay of miR-26a with its target genes.

Methods

Hypertrophic scar tissues were collected and assayed for LncRNA NORAD, miR-26a, transforming growth factor β receptor I (TGF-βR1) and TGF-βR2, with enzyme-linked immunosorbent assay (ELISA) or qualitative polymerase chain reaction (qPCR). LncRNA NORAD interfering plasmids were transfected into HSFs and induced with TGF-β1. Cell Counting Kit-8 (CCK-8) assays were performed to assess HSF proliferation, and flow cytometry to analyze apoptosis and the cell cycle. TGF-βR1, TGF-βR2, Smad2, and p-Smad2 levels were detected using western blot (WB). The related proteins (p21, cyclin D1 and cyclin-dependent kinase 4 (CDK4)) regulating the cell cycle, and apoptosis-related proteins (caspase-3 and Bcl-2) were also detected using WB. The binding sites of miRNA-26a and LncRNA NORAD, TGF-βR2, or UBE3A were predicted using Starbase and confirmed with dual luciferase reporter assay. RNA immunoprecipitation (RIP) was utilized to explore the interplay of miR-26a with its target genes.

Results

LncRNA NORAD is decreased, miR-26a is increased and TGF-β receptors show abnormal expression in scar tissue. LncRNA NORAD knockdown inhibits proliferation of HSF cells induced by TGF-β1 treatment. In addition, cell apoptotic levels are markedly increased and cell numbers in G0/G1 phase are increased. Moreover, the TGF-β/Smad pathway is regulated by decreasing endogenous LncRNA NORAD levels, possibly by affecting the relative levels of TGF-βR1. p21 is notably upregulated, while cyclin D1 and CDK4 are downregulated. Apoptosis-related proteins are significantly affected. LncRNA NORAD may act as a sponge, binding miR-26a and changing its expression. Finally, RIP shows that miR-26a targets the 3'UTRs of TGF-βR2 and UBE3A. Conclusions: LncRNA NORAD regulates HSF proliferation via miR-26a mediating the regulation of TGF-βR2/R1. LncRNA NORAD/miR-26a could be a potential target for treating HS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。