The role of PPAR-γ and NFKB genes expression in muscle to improve hyperglycemia in STZ-induced diabetic rat following magnesium sulfate administration

肌肉中PPAR-γ和NFKB基因表达在硫酸镁治疗STZ诱发的糖尿病大鼠高血糖中的作用

阅读:7
作者:Fatemeh Khosravi, Fatemeh Kharazmi, Mitra Kamran, Kianoosh Malekzadeh, Ardeshir Talebi, Nepton Soltani

Abstract

The present study was designed to investigate the possible role of magnesium (Mg2+) on activation of the peroxisome proliferator-activated receptor gamma (PPAR-γ) and inhibition of nuclear factor-KB (NFKB p65) in muscle to increase glucose transporter 4 (GLUT4) gene expression. Fifty rats were divided into five groups, namely non-diabetic control (NDC), Mg2+-treated non-diabetic control (Mg2+-NDC), chronic diabetic (CD), Mg2+-treated chronic diabetic (Mg2+-CD), and insulin-treated chronic diabetic (Ins-CD). Diabetes was induced with streptozotocin (STZ) injection. The Mg2+-CD and Mg2+-NDC groups received 10 g/l of magnesium sulfate (MgSO4) added to drinking water and Ins-CD group received 2.5 U/kg of insulin. The blood glucose level and body weight were measured every week. After 16 weeks, intraperitoneal glucose tolerance test (IPGTT) was done and then animals were decapitated, blood samples were taken to determine the plasma levels of Mg2+ and gastrocnemius muscle legs were isolated for both PPAR-γ and NFKB (p65) genes and proteins expression. Administration of MgSO4 improved IPGTT, lowered blood glucose levels and increased PPAR-γ gene and protein expression. Diabetes increased NFKB gene and protein expression. Although Mg2+ therapy could not decrease NFKB (p65) gene expression, the protein decreased by Mg2+ therapy. Insulin decreased NFKB (p65) gene and protein expression, without any effect on PPAR-γ gene and protein expression. According to our findings it seems that suppressing NFKB (p65) protein synthesis and increases in PPAR-γ gene and protein expression could help Mg2+ administration to decreases blood glucose levels. But decreasing in NFKB (p65) gene and protein expression help insulin to decrease blood glucose level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。