HDAC1 and HDAC2 orchestrate Wnt signaling to regulate neural progenitor transition during brain development

HDAC1 和 HDAC2 协调 Wnt 信号传导,调节大脑发育过程中的神经祖细胞转变

阅读:5
作者:Yue Zhu, Yunyun Huang, Tianxiang Tang, Yunli Xie

Abstract

Tightly controlled neurogenesis is crucial for generating the precise number of neurons and establishing the intricate architecture of the cortex, with deficiencies often leading to neurodevelopmental disorders. Neuroepithelial progenitors (NPs) transit into radial glial progenitors (RGPs) to initiate neural differentiation, yet the governing mechanisms remain elusive. Here, we found that histone deacetylases 1 and 2 (HDAC1/2) mediated suppression of Wnt signaling is essential for the NP-to-RGP transition. Conditional depletion of HDAC1/2 from NPs upregulated Wnt signaling genes, impairing the transition to RGPs and resulting in rosette structures within the neocortex. Multi-omics analysis revealed that HDAC1/2 are critical for downregulating Wnt signaling, identifying Wnt9a as a key target. Overexpression of Wnt9a led to an increased population of NPs and the disruption of cortical organization. Notably, Wnt inhibitor administration partially rescued the disrupted cortical architecture. Our findings reveal the significance of tightly controlled Wnt signaling through epigenetic mechanisms in neocortical development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。