Integrated epigenomic exposure signature discovery

整合表观基因组暴露特征发现

阅读:14
作者:Jared Schuetter, Angela Minard-Smith, Brandon Hill, Jennifer L Beare, Alexandria Vornholt, Thomas W Burke, Vel Murugan, Anthony K Smith, Thiruppavai Chandrasekaran, Hiba J Shamma, Sarah C Kahaian, Keegan L Fillinger, Mary Anne S Amper, Wan-Sze Cheng, Yongchao Ge, Mary Catherine George, Kristy Guevar

Aim

The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis.Materials &

Conclusion

Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.

Methods

Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES).

Results

Signatures were developed for seven exposures including Staphylococcus aureus, human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and Bacillus anthracis vaccinations. ESs differed in the assays and features selected and predictive value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。