RGS6 Drives Spinal Cord Injury by Inhibiting AMPK Pathway in Mice

RGS6 通过抑制小鼠的 AMPK 通路导致脊髓损伤

阅读:5
作者:Wenxin Dao, Zhe Xiao, Weize Yang, Xiaomin Luo, Hongxia Xia, Zuneng Lu

Conclusion

RGS6 is required for the initiation and progression of SCI, and knocking down RGS6 may provide promising therapeutic strategies for SCI patients.

Methods

Contusive SCI mouse models were generated, and lentiviral vectors were injected to silence or overexpress RGS6 in the spinal cord. To inhibit AMP-activated protein kinase (AMPK) activity, SCI mice were intraperitoneally injected with compound C (20 mg/kg) every two days. Oxidative and inflammatory markers were detected.

Objective

Oxidative stress and inflammation play critical roles in the pathogenesis of spinal cord injury (SCI). Regulator of G protein signaling 6 (RGS6) is involved in controlling ROS generation and inflammatory response under different contexts. This study is aimed at investigating its role and underlying mechanism in SCI.

Results

Spinal RGS6 expression was elevated upon SCI stimulation. RGS6 knockdown suppressed, while RGS6 overexpression aggravated oxidative stress, inflammation, and SCI in mice. Mechanistically, RGS6 elevation during SCI deactivated AMPK pathway, thereby exacerbating oxidative stress and inflammation in SCI mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。