Increased Extracellular Vesicles Mediate WNT5A Signaling in Idiopathic Pulmonary Fibrosis

特发性肺纤维化中细胞外囊泡增多介导 WNT5A 信号传导

阅读:5
作者:Aina Martin-Medina, Mareike Lehmann, Olivier Burgy, Sarah Hermann, Hoeke A Baarsma, Darcy E Wagner, Martina M De Santis, Florian Ciolek, Thomas P Hofer, Marion Frankenberger, Michaela Aichler, Michael Lindner, Wolfgang Gesierich, Andreas Guenther, Axel Walch, Christina Coughlan, Paul Wolters, Joyce

Conclusions

Increased EVs function as carriers for signaling mediators, such as WNT5A, in IPF and thus contribute to disease pathogenesis. Characterization of EV secretion and composition may lead to novel approaches to diagnose and develop treatments for pulmonary fibrosis.

Methods

We isolated EVs from BAL fluid (BALF) from experimental lung fibrosis as well as samples from IPF, non-IPF interstitial lung disease (ILD), non-ILD, and healthy volunteers from two independent cohorts. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Primary human lung fibroblasts (phLFs) were used for EV isolation and analyzed by metabolic activity assays, cell counting, quantitative PCR, and Western blotting upon WNT gain- and loss-of-function studies.Measurements and Main

Results

We found increased EVs, particularly exosomes, in BALF from experimental lung fibrosis as well as from patients with IPF. WNT5A was secreted on EVs in lung fibrosis and induced by transforming growth factor-β in primary human lung fibroblasts. The phLF-derived EVs induced phLF proliferation, which was attenuated by WNT5A silencing and antibody-mediated inhibition and required intact EV structure. Similarly, EVs from IPF BALF induced phLF proliferation, which was mediated by WNT5A.Conclusions: Increased EVs function as carriers for signaling mediators, such as WNT5A, in IPF and thus contribute to disease pathogenesis. Characterization of EV secretion and composition may lead to novel approaches to diagnose and develop treatments for pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。