Recombinant Treponema pallidum protein Tp47 promoted the phagocytosis of macrophages by activating NLRP3 inflammasome induced by PKM2-dependent glycolysis

重组梅毒螺旋体蛋白Tp47通过激活PKM2依赖性糖酵解诱导的NLRP3炎症小体促进巨噬细胞吞噬作用

阅读:6
作者:Y-W Zheng, M Wang, J-W Xie, R Chen, X-T Wang, Y He, T-C Yang, L-L Liu, L-R Lin

Background

Glycolysis is a critical pathway in cellular glucose metabolism that provides energy and participates in immune responses. However, whether glycolysis is involved in NOD-like receptor family protein 3 (NLRP3) inflammasome activation and phagocytosis of macrophages in response to Treponema pallidum infection remains unclear. Objectives: To investigate the role of glycolysis in activating the NLRP3 inflammasome for regulating phagocytosis in macrophages in response to T. pallidum protein Tp47 and its associated mechanisms.

Conclusion

Tp47 promotes phagocytosis in macrophages by activating the NLRP3 inflammasome, which is induced by the enhancement of PKM2-dependent glycolysis.

Methods

Interactions between activation of the NLRP3 inflammasome and phagocytosis and the role of glycolysis in Tp47-treated macrophages were investigated through experiments on peritoneal macrophages and human monocytic cell line-derived macrophages.

Results

Activation of phagocytosis and NLRP3 inflammasome were observed in Tp47-treated macrophages. Treatment with NLRP3 inhibitor MCC950 or si-NLRP3 attenuated Tp47-induced phagocytosis. Glycolysis and glycolytic capacity were enhanced by Tp47 stimulation in macrophages, and a change in the levels of glycolytic metabolites (phosphoenolpyruvate, citrate and lactate) was induced by Tp47 in macrophages. Inhibition of glycolysis with 2-deoxy-D-glucose, a glycolysis inhibitor, decreased the activation of NLRP3. Expression of M2 isoform of pyruvate kinase (PKM2), an enzyme catalysing a rate-limiting reaction in the glycolytic pathway, was upregulated in Tp47-stimulated macrophages. Inhibition of PKM2 with shikonin or si-PKM2 decreased glycolysis and NLRP3 activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。